Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Cardiovasc Transl Res ; 15(1): 38-48, 2022 02.
Article in English | MEDLINE | ID: covidwho-1594479

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is required for the cellular entry of the severe acute respiratory syndrome coronavirus 2. ACE2, via the Ang-(1-7)-Mas-R axis, is part of the antihypertensive and cardioprotective effects of the renin-angiotensin system. We studied hospitalized COVID-19 patients with hypertension and hypertensive human(h) ACE2 transgenic mice to determine the outcome of COVID-19 with or without AT1 receptor (AT1R) blocker treatment. The severity of the illness and the levels of serum cardiac biomarkers (CK, CK-BM, cTnI), as well as the inflammation markers (IL-1, IL-6, CRP), were lesser in hypertensive COVID-19 patients treated with AT1R blockers than those treated with other antihypertensive drugs. Hypertensive hACE2 transgenic mice, pretreated with AT1R blocker, had increased ACE2 expression and SARS-CoV-2 in the kidney and heart, 1 day post-infection. We conclude that those hypertensive patients treated with AT1R blocker may be at higher risk for SARS-CoV-2 infection. However, AT1R blockers had no effect on the severity of the illness but instead may have protected COVID-19 patients from heart injury, via the ACE2-angiotensin1-7-Mas receptor axis.


Subject(s)
COVID-19 , Hypertension , Animals , Humans , Hypertension/complications , Hypertension/drug therapy , Inpatients , Mice , Mice, Transgenic , Renin-Angiotensin System , SARS-CoV-2 , Virulence
2.
Front Cell Infect Microbiol ; 11: 564938, 2021.
Article in English | MEDLINE | ID: covidwho-1468327

ABSTRACT

T-cell reduction is an important characteristic of coronavirus disease 2019 (COVID-19), and its immunopathology is a subject of debate. It may be due to the direct effect of the virus on T-cell exhaustion or indirectly due to T cells redistributing to the lungs. HIV/AIDS naturally served as a T-cell exhaustion disease model for recognizing how the immune system works in the course of COVID-19. In this study, we collected the clinical charts, T-lymphocyte analysis, and chest CT of HIV patients with laboratory-confirmed COVID-19 infection who were admitted to Jin Yin-tan Hospital (Wuhan, China). The median age of the 21 patients was 47 years [interquartile range (IQR) = 40-50 years] and the median CD4 T-cell count was 183 cells/µl (IQR = 96-289 cells/µl). Eleven HIV patients were in the non-AIDS stage and 10 were in the AIDS stage. Nine patients received antiretroviral treatment (ART) and 12 patients did not receive any treatment. Compared to the reported mortality rate (nearly 4%-10%) and severity rate (up to 20%-40%) among COVID-19 patients in hospital, a benign duration with 0% severity and mortality rates was shown by 21 HIV/AIDS patients. The severity rates of COVID-19 were comparable between non-AIDS (median CD4 = 287 cells/µl) and AIDS (median CD4 = 97 cells/µl) patients, despite some of the AIDS patients having baseline lung injury stimulated by HIV: 7 patients (33%) were mild (five in the non-AIDS group and two in the AIDS group) and 14 patients (67%) were moderate (six in the non-AIDS group and eight in the AIDS group). More importantly, we found that a reduction in T-cell number positively correlates with the serum levels of interleukin 6 (IL-6) and C-reactive protein (CRP), which is contrary to the reported findings on the immune response of COVID-19 patients (lower CD4 T-cell counts with higher levels of IL-6 and CRP). In HIV/AIDS, a compromised immune system with lower CD4 T-cell counts might waive the clinical symptoms and inflammatory responses, which suggests lymphocyte redistribution as an immunopathology leading to lymphopenia in COVID-19.


Subject(s)
COVID-19 , HIV Infections , Adult , Anti-Retroviral Agents , CD4-Positive T-Lymphocytes , HIV Infections/complications , HIV Infections/drug therapy , Humans , Lymphocyte Count , Middle Aged , SARS-CoV-2
3.
Open Med (Wars) ; 16(1): 1403-1414, 2021.
Article in English | MEDLINE | ID: covidwho-1456126

ABSTRACT

There is no specific drug for coronavirus disease 2019 (COVID-19). We aimed to investigate the possible clinical efficacy of moderate-dose vitamin C infusion among inpatients with severe COVID-19. Data of 397 adult patients with severe COVID-19 admitted to a designated clinical center of Wuhan Union Hospital (China) between February 13 and February 29, 2020, were collected. Besides standard therapies, patients were treated with vitamin C (2-4 g/day) or not. The primary outcome was all-cause death. Secondary outcome was clinical improvement of 2 points on a 6-point ordinal scale. About 70 participants were treated with intravenous vitamin C, and 327 did not receive it. No significant association was found between vitamin C use and death on inverse probability treatment weighting (IPTW) analysis (weighted hazard ratio [HR], 2.69; 95% confidence interval [CI], 0.91-7.89). Clinical improvement occurred in 74.3% (52/70) of patients in the vitamin C group and 95.1% (311/327) in the no vitamin C group. No significant difference was observed between the two groups on IPTW analysis (weighted HR, 0.76; 95% CI, 0.55-1.07). Our findings revealed that in patients with severe COVID-19, treatment with moderate dose of intravenous vitamin C had no significant benefit on reducing the risk of death and obtaining clinical improvement.

4.
Front Immunol ; 12: 708523, 2021.
Article in English | MEDLINE | ID: covidwho-1295646

ABSTRACT

Major advances have been made in understanding the dynamics of humoral immunity briefly after the acute coronavirus disease 2019 (COVID-19). However, knowledge concerning long-term kinetics of antibody responses in convalescent patients is limited. During a one-year period post symptom onset, we longitudinally collected 162 samples from 76 patients and quantified IgM and IgG antibodies recognizing the nucleocapsid (N) protein or the receptor binding domain (RBD) of the spike protein (S). After one year, approximately 90% of recovered patients still had detectable SARS-CoV-2-specific IgG antibodies recognizing N and RBD-S. Intriguingly, neutralizing activity was only detectable in ~43% of patients. When neutralization tests against the E484K-mutated variant of concern (VOC) B.1.351 (initially identified in South Africa) were performed among patients who neutralize the original virus, the capacity to neutralize was even further diminished to 22.6% of donors. Despite declining N- and S-specific IgG titers, a considerable fraction of recovered patients had detectable neutralizing activity one year after infection. However, neutralizing capacities, in particular against an E484K-mutated VOC were only detectable in a minority of patients one year after symptomatic COVID-19. Our findings shed light on the kinetics of long-term immune responses after natural SARS-CoV-2 infection and argue for vaccinations of individuals who experienced a natural infection to protect against emerging VOC.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Aged , Antibody Formation/immunology , COVID-19/therapy , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Male , Middle Aged , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Time Factors
5.
Nat Commun ; 12(1): 1813, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1147224

ABSTRACT

Long-term antibody responses and neutralizing activities in response to SARS-CoV-2 infection are not yet clear. Here we quantify immunoglobulin M (IgM) and G (IgG) antibodies recognizing the SARS-CoV-2 receptor-binding domain (RBD) of the spike (S) or the nucleocapsid (N) protein, and neutralizing antibodies during a period of 6 months from COVID-19 disease onset in 349 symptomatic COVID-19 patients who were among the first be infected world-wide. The positivity rate and magnitude of IgM-S and IgG-N responses increase rapidly. High levels of IgM-S/N and IgG-S/N at 2-3 weeks after disease onset are associated with virus control and IgG-S titers correlate closely with the capacity to neutralize SARS-CoV-2. Although specific IgM-S/N become undetectable 12 weeks after disease onset in most patients, IgG-S/N titers have an intermediate contraction phase, but stabilize at relatively high levels over the 6 month observation period. At late time points, the positivity rates for binding and neutralizing SARS-CoV-2-specific antibodies are still >70%. These data indicate sustained humoral immunity in recovered patients who had symptomatic COVID-19, suggesting prolonged immunity.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , Severity of Illness Index , Spike Glycoprotein, Coronavirus
7.
J Ethnopharmacol ; 277: 113888, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1056890

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The coronavirus disease 2019 (COVID-19) has formed a global pandemic since late 2019. Benefitting from the application experience of Chinese Medicine (CM) for influenza and SARS, CM has been used to save patients at the early stage of COVID-19 outbreak in China. AIM OF THE STUDY: In order to evaluate the efficacy and safety of CM, and compare with Western Medicine (WM) for COVID-19, we conducted a retrospective case series study based on the patients in Wuhan Jinyintan Hospital, Wuhan, China. METHODS: The inclusion and exclusion criteria of data extraction were set for this retrospective study. All patients who were admitted by the Wuhan Jinyintan Hospital between January 17th and February 25th 2020 were considered. In addition, patients enrolled met the severe defined by the guidelines released by the National Health Commission of the People's Republic of China. In these cases included in the study, CM or WM treatment was selected according to the wishes of the patients at the beginning of hospitalization. The patients in CM group were treated with Huashi Baidu granule (137 g po, bid) combined with the injections of Xiyanping (100 mg iv, bid), Xuebijing (100 ml iv, bid) and Shenmai (60 ml iv, qd) according to the syndrome of epidemic toxin blocking the lung in the theory of Traditional Chinese Medicine. The WM group received antiviral therapy (including abidor capsule 0.2 g po, tid; Lopinavir-Ritonavir tablets, 500 mg po, bid), antibiotics (such as cefoperazone 2 g iv, bid; moxifloxacin hydrochloride tablets, 0.4 g po, qd) or corticosteroid therapy (such as methylprednisolone succinate sodium 40 mg iv, qd; prednisone, 30 mg po, qd). In addition, patients in both groups received routine supportive treatment, including oxygen inhalation, symptomatic therapy, and/or human intravenous immunoglobulin, and/or serum albumin, and treatment for underlying diseases. The clinical outcomes were evaluated based on changes related with clinical manifestations, computer tomography (CT) scan images, and laboratory examinations before and after the treatment. RESULTS: 55 severe COVID-19 patients, with 23 in CM group and 32 in WM group, were included for analyzed. There was no case of death, being transferred to ICU, or receiving invasive mechanical ventilation in two groups during hospitalization. The median time of SARS-CoV-2 RNA clearance in CM and WM group were 12 days and 15.5 days respectively, the ratio of nucleic acid negative conversion of CM group at different follow-up time points was significantly higher than that of WM group (HR: 2.281, P = 0.018). Further, the chest CT imaging showed more widely lung lesion opacity absorbed in the CM group. The high sensitivity C-reactive protein and serum ferritin decreased significantly in the CM group (P<0.05). There was no significant difference in adverse events in terms of liver function and renal function between the two groups. CONCLUSION: Based on this retrospective analysis from Wuhan Jinyintan Hospital, CM has better effects in SARS-CoV-2 RNA clearance, promoting lung lesion opacity absorbed and reducing inflammation in severe COVID-19 patients, which is effective and safe therapy for treating severe COVID-19 and reducing mortality.


Subject(s)
COVID-19 Drug Treatment , Medicine, Chinese Traditional/adverse effects , Medicine, Chinese Traditional/methods , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Anti-Bacterial Agents/therapeutic use , COVID-19/blood , COVID-19/diagnostic imaging , COVID-19/mortality , China , Female , Hospitalization , Humans , Inflammation/drug therapy , Kaplan-Meier Estimate , Lung/diagnostic imaging , Lung/pathology , Lymphopenia/drug therapy , Male , Middle Aged , RNA, Viral/analysis , RNA, Viral/drug effects , Retrospective Studies , SARS-CoV-2/drug effects , Tomography, X-Ray Computed , Treatment Outcome
8.
Lancet ; 395(10236): 1569-1578, 2020 05 16.
Article in English | MEDLINE | ID: covidwho-824547

ABSTRACT

BACKGROUND: No specific antiviral drug has been proven effective for treatment of patients with severe coronavirus disease 2019 (COVID-19). Remdesivir (GS-5734), a nucleoside analogue prodrug, has inhibitory effects on pathogenic animal and human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro, and inhibits Middle East respiratory syndrome coronavirus, SARS-CoV-1, and SARS-CoV-2 replication in animal models. METHODS: We did a randomised, double-blind, placebo-controlled, multicentre trial at ten hospitals in Hubei, China. Eligible patients were adults (aged ≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection, with an interval from symptom onset to enrolment of 12 days or less, oxygen saturation of 94% or less on room air or a ratio of arterial oxygen partial pressure to fractional inspired oxygen of 300 mm Hg or less, and radiologically confirmed pneumonia. Patients were randomly assigned in a 2:1 ratio to intravenous remdesivir (200 mg on day 1 followed by 100 mg on days 2-10 in single daily infusions) or the same volume of placebo infusions for 10 days. Patients were permitted concomitant use of lopinavir-ritonavir, interferons, and corticosteroids. The primary endpoint was time to clinical improvement up to day 28, defined as the time (in days) from randomisation to the point of a decline of two levels on a six-point ordinal scale of clinical status (from 1=discharged to 6=death) or discharged alive from hospital, whichever came first. Primary analysis was done in the intention-to-treat (ITT) population and safety analysis was done in all patients who started their assigned treatment. This trial is registered with ClinicalTrials.gov, NCT04257656. FINDINGS: Between Feb 6, 2020, and March 12, 2020, 237 patients were enrolled and randomly assigned to a treatment group (158 to remdesivir and 79 to placebo); one patient in the placebo group who withdrew after randomisation was not included in the ITT population. Remdesivir use was not associated with a difference in time to clinical improvement (hazard ratio 1·23 [95% CI 0·87-1·75]). Although not statistically significant, patients receiving remdesivir had a numerically faster time to clinical improvement than those receiving placebo among patients with symptom duration of 10 days or less (hazard ratio 1·52 [0·95-2·43]). Adverse events were reported in 102 (66%) of 155 remdesivir recipients versus 50 (64%) of 78 placebo recipients. Remdesivir was stopped early because of adverse events in 18 (12%) patients versus four (5%) patients who stopped placebo early. INTERPRETATION: In this study of adult patients admitted to hospital for severe COVID-19, remdesivir was not associated with statistically significant clinical benefits. However, the numerical reduction in time to clinical improvement in those treated earlier requires confirmation in larger studies. FUNDING: Chinese Academy of Medical Sciences Emergency Project of COVID-19, National Key Research and Development Program of China, the Beijing Science and Technology Project.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/therapeutic use , Aged , Alanine/adverse effects , Alanine/therapeutic use , Antiviral Agents/adverse effects , Betacoronavirus , COVID-19 , China , Double-Blind Method , Female , Humans , Infusions, Intravenous , Male , Middle Aged , Negative Results , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment
9.
J Transl Med ; 18(1): 328, 2020 08 31.
Article in English | MEDLINE | ID: covidwho-736397

ABSTRACT

BACKGROUND: Patients with severe Coronavirus Disease 2019 (COVID-19) will progress rapidly to acute respiratory failure or death. We aimed to develop a quantitative tool for early predicting mortality risk of patients with COVID-19. METHODS: 301 patients with confirmed COVID-19 admitted to Main District and Tumor Center of the Union Hospital of Huazhong University of Science and Technology (Wuhan, China) between January 1, 2020 to February 15, 2020 were enrolled in this retrospective two-centers study. Data on patient demographic characteristics, laboratory findings and clinical outcomes was analyzed. A nomogram was constructed to predict the death probability of COVID-19 patients. RESULTS: Age, neutrophil-to-lymphocyte ratio, D-dimer and C-reactive protein obtained on admission were identified as predictors of mortality for COVID-19 patients by LASSO. The nomogram demonstrated good calibration and discrimination with the area under the curve (AUC) of 0.921 and 0.975 for the derivation and validation cohort, respectively. An integrated score (named ANDC) with its corresponding death probability was derived. Using ANDC cut-off values of 59 and 101, COVID-19 patients were classified into three subgroups. The death probability of low risk group (ANDC < 59) was less than 5%, moderate risk group (59 ≤ ANDC ≤ 101) was 5% to 50%, and high risk group (ANDC > 101) was more than 50%, respectively. CONCLUSION: The prognostic nomogram exhibited good discrimination power in early identification of COVID-19 patients with high mortality risk, and ANDC score may help physicians to optimize patient stratification management.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Early Warning Score , Nomograms , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Adult , Aged , Betacoronavirus/physiology , COVID-19 , China/epidemiology , Cohort Studies , Female , History, 21st Century , Humans , Male , Middle Aged , Pandemics , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2
10.
BMC Infect Dis ; 20(1): 549, 2020 Jul 29.
Article in English | MEDLINE | ID: covidwho-684717

ABSTRACT

BACKGROUND: We aimed to report the epidemiological and clinical characteristics of hospitalized patients with coronavirus disease-19 (COVID-19) in Zengdu District, Hubei Province, China. METHODS: Clinical data on COVID-19 inpatients in Zengdu Hospital from January 27 to March 11, 2020 were collected; this is a community hospital in an area surrounding Wuhan and supported by volunteer doctors. All hospitalized patients with COVID-19 were included in this study. The epidemiological findings, clinical features, laboratory findings, radiologic manifestations, and clinical outcomes of these patients were analyzed. The patients were followed up for clinical outcomes until March 22, 2020. Severe COVID-19 cases include severe and critical cases diagnosed according to the seventh edition of China's COVID-19 diagnostic guidelines. Severe and critical COVID-19 cases were diagnosed according to the seventh edition of China's COVID-19 diagnostic guidelines. RESULTS: All hospitalized COVID-19 patients, 276 (median age: 51.0 years), were enrolled, including 262 non-severe and 14 severe patients. The proportion of patients aged over 60 years was higher in the severe group (78.6%) than in the non-severe group (18.7%, p < 0.01). Approximately a quarter of the patients (24.6%) had at least one comorbidity, such as hypertension, diabetes, or cancer, and the proportion of patients with comorbidities was higher in the severe group (85.7%) than in the non-severe group (21.4%, p < 0.01). Common symptoms included fever (82.2% [227/276]) and cough (78.0% [218/276]). 38.4% (106/276) of the patients had a fever at the time of admission. Most patients (94.9% [204/276]) were cured and discharged; 3.6% (10/276) deteriorated to a critical condition and were transferred to another hospital. The median COVID-19 treatment duration and hospital stay were 14.0 and 18.0 days, respectively. CONCLUSIONS: Most of the COVID-19 patients in Zengdu had mild disease. Older patients with underlying diseases were at a higher risk of progression to severe disease. The length of hospital-stay and antiviral treatment duration for COVID-19 were slightly longer than those in Wuhan. This work will contribute toward an understanding of COVID-19 characteristics in the areas around the core COVID-19 outbreak region and serve as a reference for decision-making for epidemic prevention and control in similar areas.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Length of Stay/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Adolescent , Adult , COVID-19 , Child , Child, Preschool , China/epidemiology , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Cough/epidemiology , Female , Fever/epidemiology , Humans , Hypertension/epidemiology , Infant , Infant, Newborn , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Retrospective Studies , SARS-CoV-2 , Treatment Outcome , Young Adult , COVID-19 Drug Treatment
11.
N Engl J Med ; 382(19): 1787-1799, 2020 05 07.
Article in English | MEDLINE | ID: covidwho-9371

ABSTRACT

BACKGROUND: No therapeutics have yet been proven effective for the treatment of severe illness caused by SARS-CoV-2. METHODS: We conducted a randomized, controlled, open-label trial involving hospitalized adult patients with confirmed SARS-CoV-2 infection, which causes the respiratory illness Covid-19, and an oxygen saturation (Sao2) of 94% or less while they were breathing ambient air or a ratio of the partial pressure of oxygen (Pao2) to the fraction of inspired oxygen (Fio2) of less than 300 mm Hg. Patients were randomly assigned in a 1:1 ratio to receive either lopinavir-ritonavir (400 mg and 100 mg, respectively) twice a day for 14 days, in addition to standard care, or standard care alone. The primary end point was the time to clinical improvement, defined as the time from randomization to either an improvement of two points on a seven-category ordinal scale or discharge from the hospital, whichever came first. RESULTS: A total of 199 patients with laboratory-confirmed SARS-CoV-2 infection underwent randomization; 99 were assigned to the lopinavir-ritonavir group, and 100 to the standard-care group. Treatment with lopinavir-ritonavir was not associated with a difference from standard care in the time to clinical improvement (hazard ratio for clinical improvement, 1.31; 95% confidence interval [CI], 0.95 to 1.80). Mortality at 28 days was similar in the lopinavir-ritonavir group and the standard-care group (19.2% vs. 25.0%; difference, -5.8 percentage points; 95% CI, -17.3 to 5.7). The percentages of patients with detectable viral RNA at various time points were similar. In a modified intention-to-treat analysis, lopinavir-ritonavir led to a median time to clinical improvement that was shorter by 1 day than that observed with standard care (hazard ratio, 1.39; 95% CI, 1.00 to 1.91). Gastrointestinal adverse events were more common in the lopinavir-ritonavir group, but serious adverse events were more common in the standard-care group. Lopinavir-ritonavir treatment was stopped early in 13 patients (13.8%) because of adverse events. CONCLUSIONS: In hospitalized adult patients with severe Covid-19, no benefit was observed with lopinavir-ritonavir treatment beyond standard care. Future trials in patients with severe illness may help to confirm or exclude the possibility of a treatment benefit. (Funded by Major Projects of National Science and Technology on New Drug Creation and Development and others; Chinese Clinical Trial Register number, ChiCTR2000029308.).


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/isolation & purification , Coronavirus Infections/drug therapy , Cytochrome P-450 CYP3A Inhibitors/therapeutic use , Lopinavir/therapeutic use , Pneumonia, Viral/drug therapy , Ritonavir/therapeutic use , Adult , Aged , Antiviral Agents/adverse effects , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytochrome P-450 CYP3A Inhibitors/adverse effects , Drug Therapy, Combination , Female , Hospital Mortality , Humans , Intention to Treat Analysis , Lopinavir/adverse effects , Male , Middle Aged , Pandemics , Patient Acuity , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Proportional Hazards Models , Reverse Transcriptase Polymerase Chain Reaction , Ritonavir/adverse effects , SARS-CoV-2 , Time-to-Treatment , Treatment Failure , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL